
774 I N T E G R A T E D  I N T E N S I T Y  F R O M  E X T E N D E D - F A C E  I M P E R F E C T  CRYSTALS 

affected. Since the factor is 0-dependent, failure to take 
account of it may have significant influence on tem- 
perature factors and extinction parameters derived 
from the measurement of a series of reflexions. 

With the inbuilt flexibility of modern diffractometers, 
there is increased interest in the potential of this clas- 
sical technique to measure structure factors of high 
precision. Establishment of such data on an absolute 
scale is only possible if all correction factors are re- 
cognized, assessed and included. In the past, the in- 
fluence of surface-layer absorption on structure factors 
derived by this procedure has been largely overlooked. 

In relation to this technique, Wooster & Macdonald 
(1948) have drawn attention to the trend of the two 
limiting values of intensity - that for the perfect crystal 
and that for the ideally imperfect crystal - to approach 
one another with increasing wavelength. They con- 
cluded that it is advantageous to use longer wavelengths 
for the determination of accurate structure factors. 
This region is obviously one in which inclusion of the 
correction factor for surface-layer absorption is essen- 
tial. 

I am most grateful to Mr. J. Cook, National Meas- 
urement Laboratory, CSIRO, Sydney, for supplying 
the boule of lithium fluoride. 
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The basic equation of dynamical diffraction for imperfect crystals, which has been derived previously 
by a general dynamical theory of diffraction, is rederived classically based on the Ewald-Laue--Bethe 
concept, thus completing the formulation of a 'scattering matrix' theory. It is shown in this classical 
derivation that a series of assumptions is required at each stage of the mathematical formulation to 
allow it to proceed further. These assumptions are then viewed in terms of the general dynamical 
theory of diffraction, and found unnecessary in the rigorous formulation. This classical formulation 
provides a conceptual relation between the traditional Ewald-Laue-Bethe dynamical theory and the 
general dynamical theory, one that has been derived with the aid of quantum-field theory. 

1. Introduction 

A general dynamical diffraction theory for imperfect 
crystals has been formulated previously by use of a 
quantum-field theoretical treatment of scattering 
problems (Ashkin & Kuriyama, 1966; Kuriyama, 
1967). This theory has succeeded in rigorously deriving 
a fundamental equation of dynamical diffraction in the 
momentum representation (Kuriyama, 1970, 1972) and 
a basic integral equation for topography in the spatial 
coordinate representation (Kuriyama & Early, 1974). 

In addition to rigor, another virtue of this theory is 
that the optical conditions are automatically included 
in the theory (for example, Ashkin & Kuriyama, 
1966; Kuriyama, 1968a). This is particularly important 
because imperfect crystals lack periodic translational 
invariance; diffracted beams behave differently in their 
intensity and angular divergence, depending upon both 
the location of the incident beam on the crystal and the 
exit locations of the diffracted beams. This property 
of diffracted beams has made it possible to develop a 
new field of diffraction topography. 
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Much of the physics involved in diffraction from 
imperfect crystals has been explained in a series of 
papers based on this general dynamical theory for 
imperfect crystals (for example, Kuriyama, 1969). 
This theory is a 'scattering matrix' theory in the same 
sense as the many beam electron diffraction theory is. 
This equivalence has been demonstrated previously in 
an explicit form (Kuriyama, 1970). However, many 
have failed (for example, Kato, 1973) to recognize the 
direct equivalence between that general dynamical 
theory and the 'scattering matrix' theory, simply 
because the former has been derived not by the tradi- 
tional method of dynamical diffraction theories, but by 
quantum mechanics. The purpose of this paper, there- 
fore, is to demonstrate how one can derive the results 
of the general dynamical theory of diffraction for 
imperfect crystals from the traditional Ewald-Laue-  
Bethe dynamical theory of diffraction. In so doing, one 
cannot help noticing the necessity of many ad hoc 
assumptions which cannot be justified within the 
framework of the classical formulation. 

These assumptions are to be justified only after the 
final results have been compared with experimental 
results. Since a series of assumptions has been in- 
troduced to obtain a final result, and moreover, since 
the result is given usually by numerical computations, 
it is not obvious whether or not those assumptions are 
really justified individually, even though they seem to 
be reasonable 'physically'. In contrast, most of these 
ad hoc assumptions are not required in the quantum- 
mechanical formulation. Certain mathematical restric- 
tions on the classical derivation cannot be generalized 
be'cause of mathematical difficulties. On the contrary, 
the general dynamical theory derived previously has 
proven that those restrictions are, in fact, not required. 

The ad hoc assumptions and restrictions will be 
denoted in the text by Roman numerals, when they are 
introduced for the first time. These numbered assump- 
tions and restrictions will later be discussed indi- 
vidually in comparison with the general dynamical dif- 
fraction theory. In the following classical formulation, 
the vector potential will be used to derive the wave 
equation of radiation fields for dynamical diffraction, 
unlike in the traditional derivation where electric or 
magnetic field strengths are used to represent the radia- 
tion fields. 

2. A classical derivation of wave equations 
for radiation fields in a medium 

In the following classical derivation, the basic principle 
is to reformulate the Ewald-Laue-Bethe theory for an 
imperfect crystal which does not possess periodic 
translational invariance. It is known that the wave 
equation for dynamical diffraction of electrons (or 
neutrons or other particles) is given in a form identical 
to the wave equation for dynamical diffraction of X- 
rays, except that the Coulomb crystal potential re- 
places the induced polarizability, and the Schr6dinger 

equation is used instead of the Maxwell equations.* 
The radiation (X-rays) field, therefore, will be treated 
here as an example to obtain the wave equation for 
dynamical diffraction. 

The radiation (electromagnetic) field is expressed in 
terms of the vector potential, A, by the electric and 
magnetic field strengths: 

1 OA 
E -  H = V x A .  (2-1) 

c c~t' 

Since the radiation field is transverse, the radiation or 
Coulomb gauge is adopted: 

V . A = 0 .  (2-2) 

Then the Maxwell equations lead to the following 
equation for the vector potential, A: 

4re. 
OA = - - j ,  (2-3) 

¢ 

where 
1 c32 

- -  _ _  . . . . .  V 2 .  
[] -- C 2 6~t 2 

The current density, j, induced in the medium by the 
radiation field is (I) assumed to be given by 

e 2 
j(r, t )=  - - -  0(r)A(r, t). (2-4) 

mc 

Thus, (2-3) reduces to 

[ O -  ~b(r)]A(r, t ) = 0 ,  (2-5) 
where 

4he z 
~b(r) . . . .  me- z- 0(r). (2-6) 

Since the medium (or crystal) does not have periodic 
translational invariance because of imperfections in it, 
the classical polarizability, ~b(r), cannot be expanded 
into a Fourier series, in contrast with the polarizability 
in a perfect crystal. Under this condition, the polar- 
izability (or crystal potential in the case of electrons) 
should (II) be described by a Fourier integral rather 
than by a Fourier series: 

I Vd3k 
~b(r)= ~ ~(k) exp [ik. r], (2-7) 

where V is the crystal volume, and 

1 I dar~b(r) exp [ - i k .  r]. (2-8) 
 qx)= allspaco 

If the crystal (or medium) is perfect, then ~b(k) is given 
by an integral within the unit cell: 

~b(k) = 4roe 2 1 I d3r0(r) exp [ - i k .  r] (2-9) 
m c  2 l)a u n i t  c e l l  

* Even though the Schr6dinger equation is used to derive 
the wave equations for these particles, this derivation is con- 
sidered to be classical, as opposed to the scattering formalism 
of contemporary quantum theory. 
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for a perfect crystal, as is known in the traditional 
dynamical theory. 

Any function can be expanded by a complete set of 
eigenfunctions. The vector potential A is, therefore, 
written: 

A(r, t) = l (-2-~)3 I ~ t;(k,2)u(k,2)exp [ik r-loot] 
d3k do) 

~-~ • , 

(2-10) 

where a(k,;t) represents the unit vector of the polar- 
ization direction of the plane wave propagating in the 
k direction, u(k, 2) also depends on ¢o, but, for simpli- 
city, this dependence is not explicitly written. Because 
of the transversality condition, (2-2), there are two 
independent directions specified by 2=  1 and 2, which 
are perpendicular to each other and to the propagation 
direction, k. Substituting (2-7) and (2-10) into (2-5), 
multiplying by ~(k,2) exp [ - i k .  r+icot] and inte- 
grating over all space and time, we obtain 

I vek' ~b(k- k') [u(k')lk. x=0,  

(2-11) 
where 

[u(k')]k,X=~ a(k,2), c(k'2')u(k'2'). (2-12a) 
A' 

In the first term of (2-11), the relation 

a(k,2), c(k,2') = fixz, (2-13) 

has been used. The polarization directions of the wave 
propagating in the k' direction can be chosen so that 
either the 2 '=1  or 2 ' = 2  direction may be perpen- 
dicular to the given polarization direction a(k, 2) of the 
wave propagating in the k direction. Thus we can 
always express, in terms of the proper choice of the 
{2'} system, 

[u(k')Jk. = 
= P(k2; k'2')u(k'2'), (2-12b) 

where 2' is either 1 or 2, depending upon which direc- 
tion is not perpendicular to 2. 

To proceed further at this stage, it is inevitable to 
introduce (III), a drastic assumption - a concept of 
lattice in an imperfect crystal. We assume that one ;an 
always assign to an imperfect crystal a perfect reference 
crystal whose reciprocal-lattice vector is denoted by 
K's (I, J and H will also be used to represent a recip- 
rocal-lattice vector). Then we can express a vector k 
in terms of K and the deviation from K as follows: 

k = k + K + q ,  (2-14) 

where q is restricted to within the reciprocal unit cell, 
and ~: will be written hereafter as k without further 
confusion.* Thus the integral operation in (2-11) can 

* The k (later k) is still arbitrary at this stage. It will be 
defined physically by (2-16). See discussion (IV) in § 4. 

be replaced by sums: 

~ ) X - ~  ~ (2n) 5 - > ~  ~ ,  (2-15) 

where the prime mark on the integral sign indicates 
an integration within a reciprocal unit cell, and the 
summation over q is also limited to this volume. 

To ensure elastic scattering in diffraction, it is ne- 
cessary to introduce further (IV), the elastic scattering 
conditions: 

(co/c)Z=lklZ~-Ik+K+ql 2 (2-16) 

and any vector k or k' can be constructed from k by 
adding K and q, namely 

k - + k + K + q  ] 
(2-17) 

and k' -+ k + K '  +q' .  

We thus obtain classically the wave equation for 
dynamical diffraction of X-rays by substituting (2-16) 
and (2-17)into (2-11) and using (2-15): 

[(k + K + q)z-  kZ]u(k + K +q;2)  

- ~ ~ ~(K + q - K ' -  q')P(K +q ,2 ;K '  + q',2') 
K '  q '  

x uO~+K'+q';2')=O. (2-18a) 

The factor P is a polarization factor and 2' is chosen as 
discussed in (2-12b). For a single Bragg diffraction 
condition in a perfect crystal (K--0, H and - H  are 
considered), (2-12b) yields, for instance, 

and 
P(k, 1; k + H, 1):l~(k, 1). c(k + H, 1) = cos 20B 

P(k, 2;k + H, 2) = e(k, 2). e(k + H,2)=  1. 

Equation (2-18) can be written in a matrix form" 

where 
L. u=O, (2-18b) 

-u(k + K  + q,)J') - 

u =  7,0,, 

_u(k + K' + q', 2')_ 

and 

[LI, + q, j + q,= [(k + I + q)Z_ k 2 - ~b(0)16,j6.q, 

--~b(I+ q - J - q ' ) P ( I  + q,J + q' ;2') 

x (1 - 6qq'61J).  

(2-19) 

(2-20) 

For electrons, neutrons and other particles, the 
Schr6dinger equation can be reduced to a form ident- 
ical to (2-18), except for the polarization factors, to 
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give the wave equation for dynamical diffraction, if ~b 
is understood as the crystal potential. We will, there- 
fore, treat dynamical diffraction of all the particles 
and X-rays together hereafter. For simplicity, only a 
scalar field will be treated; for X-rays, a linearly 
polarized radiation is considered by suppressing 
P ( I + q , J + q '  ;2'). 

Next we rewrite the diagonal elements of matrix I_: 

+ I + q y -  k 2 -  ¢(0) - 0~ + I + q)2-  Q2 
= ( Q  + I + q)Z_ Qz + 2 (Q+ I +q) ( k - Q ) +  ( k -  Q) z, 

(2-21) 

where Q is a new vector whose magnitude is 

IQI = Q = l/kz + ~b(0), 

and whose direction is defined to be parallel to k. 
Here we introduce (V), another assumption, that the 
last term in (2-21), (k -Q)2 ,  can be discarded. Then we 
can write 

k = M0 + 2QzO z, (2-22) 
where 

[ M 0]~ + q,J + q = [( Q + I + q)2 _ Q2]d,,,dqq. 

- ~b(I + q - J - q) (1 - dqq,d.a), 

[ O ]  I + q ,  J + q : (COS 01 + q ) l / 2 ~ I j C ~ q q ,  , 

and 
z = l k - Q I .  

(2-23) 

(2-24) 

(2-25) 

The angle between Q and Q + I + q  is denoted by 
0t+q. Equation (2-22) can be rewritten, for con- 
venience, 

k = O[0-1M00 -~ + 2Qzl]O. (2-26) 

The matrices used here can be considered also as 
super-matrices. For example, the (I,J) element of the 
super-matrix k is given by a matrix whose elements 
are specified by (q,q'). In this notation, the element of 
a super-matrix L is written rLlq'q' instead of L J l , J  , 
[L],+q. a+q,. 

Hereafter all the matrices are super-matrices. 

3. Niehrs ' s  so lut ion for the L a u e  geometry  
and its integral  express ion  

To solve (2-18) for given diffraction conditions, we 
need boundary conditions which define the geometric 
relation between the crystal and the incident beam. In 
this section, the solution of (2-18) will be (VI) sought 
under the boundary condition in the Laue geometry. 

Niehrs (1965) obtained the solution in this geometry 
expressed in terms of the present notation in the 
following form: 

[U(i)]K+q=[A(Zi)] q'° [-~z get )] K,O / L(z (3-1) 
g = Z  i , 

where zi is the ith solution of det L(z)=0, and corre- 
sponds to the ith mode of the diffracted waves, and 
the matrix A is the adjoint of the matrix L. The (n,m) 

element of A is the algebraic complement, or the 
cofactor, of the (re, n) element of k. Consequently, the 
outgoing wave in a particular direction outside of the 
crystal is given by a superposition of individual modes 
whose amplitude is determined by (3-1). We can, 
therefore, consider the following function as the out- 
going wave propagating in the K + q  direction" 

WK+q(aK) = ~ [U")JK+qf(Z,;ar), (3-2) 
i 

where f(z~;aK) is an analytic function representing the 
wave state of each mode, and a r  is a coordinate along 
the K + q  propagation direction.* The functions, 
f(z~;a), are analytic in the domain of z, including z~'s. 
Then, it immediately follows from (3-1) and (3-2) that 

[A(z3]1;~ 
WK+q(a)= ~ [~}det k(z)]z=~, 

f [A(z)]~;~ dz 
= det L(z) f ( z ;  a) 2hi ' 

- -  f ( z ,  ; a) 

(3-3) 

provided (VII) that all the characteristic values of 
I_(z) are distinct: z~¢zj.  It is guaranteed by (2-20) or 
(2-26) that A(z) is analytic in the domain of this inte- 
gral. 

The inverse matrix of L is given in terms of its co- 
factors and, in turn, its adjoint matrix A by 

A 
L -1 - (3-4) 

det L" 

Equation (3-3) thus reduces to 

dz -1 q,o 
WK+q(a)= 2rant" [L (Z)]K,O f (z ;a )  

Tm.[L- (Z)]K;0 f(Z; a), 

(3-5) 

where f (z ,  a) vanishes in the limit of large z's. From 
(2-26), we obtain 

L- l ( z )=O- l[O-1MoO -1 + 2QzI]-lO -~. (3-6) 

Substituting this expression into (3-5), we obtain in 
the matrix form: 

1 
[W(a)]~;~ - 2Q 

x 0 -1 ~ - : . { 0 - 1 M o O - l + z I  ;a 0 -1 
--oo K ,0  

(3-7) ,[ ) qoo 
- 2 Q  O - ~ f  - M 0 0 - 1 ; a  O a g , o '  

* The ar is merely a mathematical parameter. Its physical 
interpretation is arbitrary, indicating a shortcoming of the 
classical theory. See discussion (VIII) in § 4. 
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where the (K,0;q,0) element of W(a) is given by 

If we are (VIII) interested in a plane-wave state, 
then the function f is given by an exponential. Thus 
(3-7) reduces to the result obtained previously by a 
general dynamical diffraction theory (Kiruyama, 
1970): 

W(o.)= ~ 1 0 _ l e x p  [ _  ~ia O_IM ° O_~] O_ 1 

l o-2 exp [ ia ] 
- 2 Q  - f - Q  M o O  - z  , (3-8) 

which is the scattering amplitude of the outgoing waves 
denoted by the S matrix in (2-30) in a previous paper 
(Kuriyama, 1970). Thus we can arrive classically at 
the basic dynamical diffraction equation for imperfect 
crystals: 

dS 
do- - ( - / )MS, (3-9) 

where 
S=2QOZw 

and 
(3-10) 

M = Mo O-z. (3-11) 

4. Comparison of the classical derivation with the 
general dynamical diffraction theory 

It has been demonstrated in the two previous sections 
that a classical formulation based on the Ewald-Laue-  
Bethe concept can produce the fundamental equation 
of dynamical diffraction for imperfect crystals, thus 
recreating the results of the general dynamical diffrac- 
tion theory previously derived by a quantum-field 
theoretical treatment. It has also been proven that the 
general dynamical diffraction theory is, in fact, a 
'scattering matrix' theory,* even though it was formul- 
ated quantum mechanically. Once the fundamental 
equation is obtained, as shown in (3-9), in the momen- 
tum representation, all the previous results obtained 
by the general dynamical diffraction theory will be 
immediately reproduced. A general extinction theory 
described previously by Kuriyama & Miyakawa (1969, 
1970) can be obtained by a perturbation method from 
(3-9). Both the 'ray' and the 'wave' theories can be 
reconstructed exactly in the same way as shown before 
(Kuriyama, 1972, 1973). The basic equation for top- 
ography (Kuriyama & Early, 1974) will be also obtained 
immediately, if proper optical conditions are added to 
the classical derivation. 

Although the classical derivation has led to results 
equivalent to those from the quantum-field theoretical 
formulation, there is basic deficiency in the classical 
derivation; it requires a series of assumptions and 
restrictions one after another before that derivation 

* The words 'scattering matrix theory' are used here in the 
sense that Kato (1973) meant, although the correct terminology 
should belong to quantum mechanics. 

yields the fundamental dynamical diffraction equation, 
(3-9). Those assumptions were numbered by Roman 
numerals, when they were introduced in the text for 
the first time. In the following it will be demonstrated 
item by item that these assumptions are not needed, 
but can rather be derived as theoretical consequences 
by the process of mathematical manipulation, if more 
rigorous formulation, such as a quantum-field theoret- 
ical treatment, is adopted from the outset. 

(I) It is known that the use of second quantization or 
quantum-field theory makes it possible to write the 
electron current operator as a derivative of the 
Lagrangian density with respect to the photon field 
operator. The correct form of the current operator has 
been given by Ashkin & Kuriyama (1966) for X-ray 
diffraction, where the current operator includes part 
of the current that creates the Kramers-Heisenberg 
dispersion terms (Kuriyama, 1971). 

(II) As Kuriyama & Miyakawa (1970) have discussed 
previously, the quantum-field theoretical technique for 
scattering problems, which deals with propagation of 
particles in matter, demands that polarizability should 
be a non-local function and hence represented by a 
double Fourier integral]- (Kuriyama, 1967). In par- 
ticular, if one ignores the Kramers-Heisenberg term in 
the polarizability, the double Fourier integral reduces 
to a single Fourier integral because of the presence of a 
delta function in the polarizability (Kuriyama, 1967). 

(Ill) The above discussion, in itself, leads to the pro- 
duction of diffracted beams, not only in the Bragg- 
diffracted (by a perfect crystal) direction, but in any 
direction (in the extreme case). The dynamically 
diffracted waves in imperfect crystals cannot be de- 
scribed by Bloch waves. Only the correct calculation 
of the polarizability in imperfect crystals can interpret 
J and q properly through the geometrical structure 
factor (Kuriyama, 1967, 1968b): 

1 
g({)=  [~ ~ exp [ - i~ , .  R,], (4-1) 

where N is the total number of atoms in the crystal, 
R, is the position of the nth atom and { is a vector in 
the momentum space, eventually associated with J 
and q. In terms of this geometrical factor, one can 
naturally introduce the concept of 'perfect reference 
crystal' without an assumption. The geometrical 
structure factor has maxima at values which are 
multiples of a set of vectors. These vectors can be 
identified as the basis vectors associated with the per- 
fect reference crystal in the following way. Suppose 
that we know the positions of all the atoms in the 
crystal by use of an ideal lattice theory. Then we 
would know that the atomic spacings are close to a set 

? Since the non-local function contains at least two four- 
vector variables, it involves two (double) Fourier transforms 
with respect to these two four-vector spaces. 
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of constant values, which forms a unit cell. The lattice 
made up of these unit cells can be referred to as the 
perfect reference crystal in which we can define a 
reciprocal lattice and its basis vectors. We assign this 
physical meaning (the reciprocal-lattice vectors) to the 
vector d. Thus, q is thought of as a vector describing 
the deviation from a reciprocal-lattice point, being 
similar to diffuse scattering. 

(IV) The condition of elastic scattering cannot be 
introduced classically, because elastic scattering and 
inelastic scattering are successfully defined only by 
quantum-mechanical concepts. As shown by Ashkin 
& Kuriyama (1966) and Kuriyama (1971), the Lehmann, 
Symanzik & Zimmermann (1955, 1957) (LSZ)formula- 
tion (Low, 1955: Goldberger, 1955) or its equivalent 
can deal with the scattering condition in conjunction 
with boundary conditions. Energy conservation leads 
to elastic scattering, and momentum conservation 
leads to the Bragg diffraction condition. The momen- 
tum k in (2-14) represents all possible modes allowed 
inside the crystal; the specific set of k's (and, in turn, 
[:) are not determined until the incident beam is 
brought into the crystal. In the classical derivation, this 
can be done by the boundary conditions with the 
elastic scattering assumption. In the LSZ formulation, 
this process is automatically contained. The arbi- 
trariness of k without the assumption of elastic scat- 
tering indicates another shortcoming of the classical 
theory. 

(V) This assumption has been justified by the argu- 
ment presented previously in terms of backward 
scattering (for example, Kuriyama, 1972). In the cor- 
rect formulation, the scattering amplitude can be 
calculated without this assumption. 

(VI) to (VIII) If one had started with the LSZ formula- 
tion, all of these assumptions and mathematical 
restrictions would not be required, as seen from 
previous papers (Kuriyama, 1967, 1970). 

(VI) The Laue geometry was merely adopted for 
mathematical simplicity in derivation of the funda- 
mental diffraction equation for imperfect crystals in 
previous papers (Kuriyama, 1970, 1972). However, in 
the present classical derivation, one could not derive 
the desired result without making use of Niehrs's 
work in the Laue geometry. 

(VII) In the derivation of equation (3-3), the restric- 
tion that the characteristic values be distinct is 
mathematically indispensable. In contrast, the LSZ 
formula has yielded an integral expression essentially 
identical to (3-5) and, in turn, to (3-3) as the starting 
equation for the scattering amplitude without any 
restrictions (Ashkin & Kuriyama, 1966; Kuriyama, 
1970). 

(VIII) The function f has been introduced in (3-2) 
without any physical meaning and role. However, this 
quantity has a clear physical meaning in the LSZ 
formulation, as shown previously (Ashkin & Kuriyama 
1966; Kuriyama, 1967). It should be emphasized that 
(3-5) is a classical counterpart of the LSZ formula 

S= I f d4xld4x2[vqlD2D(xl,x2) 
- t 3 1 f i ( x ~ -  x 2 ) ] f * ( x t ) f ( x 2 ) ,  (4-2) 

which has been derived for dynamical diffraction by 
Ashkin & Kuriyama (1966). In this formulation, the 
functions f and f *  are well defined so that the optics 
in diffraction is explicitly contained in (4-2). There is 
no arbitrariness concerning the meaning of oK. This is 
another merit of the quantum-mechanical formulation. 

As mentioned in the Introduction, the basic principle 
in a dynamical diffraction theory for imperfect crystals 
is the lack of periodic translational invariance. It is 
this lack also that necessitates the inclusion of the 
beam and detection optics at the onset of the rigorous 
theoretical formulation. With the aid of quantum-field 
theoretical technique, we can formulate a theory of 
dynamical diffraction complying with the two impor- 
tant requirements: no invariance under periodic 
translations and the inclusion of the beam optics. 
These two requirements are essential in diffraction 
topography (or microscopy). In contrast, the classical 
derivation fails to include the optics as a natural con- 
sequence, as seen in this paper. 
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